

Date: 20-11-2024

Dept. No.

Max. : 100 Marks

Time: 09:00 am-12:00 pm

SECTION A - K1 (CO1)

Answer ALL the Questions - (10 x 1 = 10)

1. Answer the following.

- a) Recall chain rule in differentiation.
- b) State Leibnitz theorem.
- c) Write the partial differential co-efficient of $u = \sin(ax+by+cz)$ with respect to x .
- d) Determine the integral value of $x \sin x$ with respect to x .
- e) Point out the integral value of e^{-5x} with respect to x .

2. Fill in the blanks.

- a) When differentiating the equation $x^2 + y^2 = 25$ implicitly with respect to x , we get $\frac{dy}{dx} = \dots$
- b) A critical point is where the derivative of a function is either zero or \dots .
- c) The partial derivative of $f(x, y) = x^2 y + 3x y^2$ with respect to x is \dots .
- d) The integral of $\frac{1}{\sqrt{2x}}$ with respect to x is \dots .
- e) The linear property of definite integral is \dots .

SECTION A - K2 (CO1)

Answer ALL the Questions (10 x 1 = 10)

3. Choose the correct answer for the following.

- a) What is the derivative of $f(x) = \sin 10x$?
 - (i) $\sin 10x$
 - (ii) $-\sin 10x$
 - (iii) $-10 \cos 10x$
 - (iv) $10 \cos 10x$
- b) Leibnitz theorem provides a formula to find
 - (i) The n^{th} derivative of a sum of two functions
 - (ii) The n^{th} derivative of a product of two functions
 - (iii) The integral of a product of two functions
 - (iv) The integral of a sum of two functions
- c) The second derivative test is used to determine
 - (i) The existence of limits
 - (ii) The concavity of a function
 - (iii) The continuity of a function
 - (iv) The average value of a function

d)	What technique is commonly used to integrate rational algebraic functions of the form $\frac{P(X)}{Q(X)}$, where $P(X)$ and $Q(X)$ are polynomials? (i) Trigonometric substitution (ii) Integration by parts (iii) Partial Fractions (iv) Substitution Method
e)	The definite integral of $x^3(1-x)$ from 0 to 1 is (i) $\frac{-1}{20}$ (ii) 1 (iii) $\frac{1}{20}$ (iv) 20
4.	State true or false.
a)	If a function $f(x)$ has a derivative at a point, it is guaranteed to be differentiable everywhere.
b)	A function is increasing on an interval if its first derivative is positive on that interval.
c)	The derivative of a constant function is zero.
d)	Integration by parts is a technique based on the product rule of differentiation.
e)	If $F(X)$ is an antiderivative of $f(x)$, then $\int_a^b f(x)dx = F(b) - F(a)$.

SECTION B - K3 (CO2)

Answer any TWO of the following

(2 x 10 = 20)

5. Apply Leibnitz theorem to compute n^{th} derivative of $x^2 e^{-10x}$.

6. Evaluate y_n when $y = \frac{3}{(x-1)(2x-5)(x+1)}$ by resolving into partial fractions.

7. Determine $\int \frac{x^{24}}{x^{10}+1} dx$.

8. Using partial fraction method, evaluate $\int \frac{dx}{(1+x)(1+x^2)}$.

SECTION C – K4 (CO3)

Answer any TWO of the following

(2 x 10 = 20)

9. Verify Euler's theorem when $u = x^3 - 3x^2y + 3xy^2 + y^3$.

10. Determine $\frac{du}{dt}$ where $u = x^2 + y^2 + z^2$, $x = e^t$, $y = e^t \sin t$ and $z = e^t \cos t$.

11. Evaluate $\int_0^{\frac{\pi}{2}} \log \tan \theta d\theta$.

12. Compute $\int \frac{x^2 + 2x - 1}{\sqrt{x}} dx$.

SECTION D – K5 (CO4)

Answer any ONE of the following

(1 x 20 = 20)

13. Determine the maxima and minima of the function $x^3 - 18x^2 + 96x + 4$.

14. State the condition under which a rational function is integrable and evaluate $\int \frac{3x+1}{(x-1)^2(x+3)} dx$.

SECTION E – K6 (CO5)

Answer any ONE of the following

(1 x 20 = 20)

15. If $y = \sin(m \sin^{-1} x)$, prove that $(1-x^2)y_2 - xy_1 + m^2 y = 0$ and hence show that
 $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2 - n^2)y_n = 0$

16. (i) Compile reduction formula for $\int \sin^n x dx$ and hence evaluate $\int_0^{\frac{\pi}{2}} \cos^8 x dx$. (10 marks)
(ii) Test that $\int_0^{\frac{\pi}{2}} \sin^n x dx$. (10 marks)

\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$